LEO ZHOU

EDUCATION

Harvard University Ph.D. in Physics Thesis: Complexity, Algorithms, and Applications of Programmable Quantum Many-Body Systems <i>Advisor: Mikhail Lukin</i>	Cambridge, MA 2014–21
Massachusetts Institute of Technology B.Sc. in Physics and Mathematics; Minor in Economics; GPA: 5.0/5.0 Thesis: Error-Suppression by Energy-Gap Protection for Quantum Computation in Open Systems <i>Advisor: Edward Farhi</i>	Cambridge, MA 2010–14
RESEARCH EXPERIENCE	
 California Institute of Technology – Walter Burke Institute for Theoretical Physics DuBridge Postdoctoral Scholar with Prof. John Preskill Lead independent research in quantum algorithms for inference and optimization problems Investigated the complexity of finding local minima in quantum systems and the computational po Managed graduate and undergraduate students in multiple research projects 	Pasadena, CA 2021–Present
 BlueQubit, Inc. <i>Quantum R&D Scientist</i> Advised quantum research efforts and developed quantum algorithmic solutions for sampling task 	Los Angeles, CA 2023–Present
 Harvard University – Department of Physics Graduate Research Fellow with Prof. Mikhail Lukin Analyzed performance and mechanism of QAOA, and invented powerful heuristics for optimizing Designed realistic schemes of quantum information processing applications in cold atoms with err Developed specialized software libraries for simulating many-body physics using matrix product 	<i>Cambridge, MA</i> 2014–21 g its parameters ror analysis state ansatz
 Google Quantum AI Research Intern with Prof. Edward Farhi Studied noise-resilience and error-mitigation of the Quantum Approximate Optimization Algorith Calculated the typical-case performance of the QAOA applied to spin glass problems in the therm Developed software tools in Google's code base for running quantum algorithms on their quantum 	Venice, CA Summer 2019 m (QAOA) odynamic limit n processors
Hebrew University – Department of Computer Science and Engineering Visiting Researcher with Prof. Dorit Aharonov Summ • Initiated the study of resource requirements of analog quantum simulation of complex systems by • Proved separation of classical vs. quantum systems on the possibility of reducing the degree of co	<i>Jerusalem, Israel</i> ners 2014 & 2015 simpler ones nnectivity
 Massachusetts Institute of Technology Undergraduate Researcher Proved that the energy penalty method can suppress errors in Hamiltonian-based computations wi Investigated hydrodynamic pilot-wave analogues of quantum systems with Prof. John W.M. Bush Built graphene and transition-metal dichalcogenide-based nanoelectronics with Prof. Pablo Jarillo Analyzed high energy heavy ion collisions from RHIC and LHC with Dr. George S.F. Stephans 	<i>Cambridge, MA</i> 2010–14 th Prof. Farhi -Herrero

AWARDS AND HONORS

•	Outstanding Paper Award at the 17th Conference on Theory of Quantum Computation, Communication and Cryptography (TQC'22)	2022
•	Grant Winner (\$5k) for Excellent Contributed Talk at QC40: Physics of Computation Conference	2021
•	Burke Prize Fellowship at the California Institute of Technology	2021
•	Bloch Fellowship at Stanford University (declined)	2021
•	Hartree Fellowship at the Institute of Advanced Computer Studies, University of Maryland (declined)	2021
•	Martin & Beate Block Award (for best poster presented by co-author ST. Wang) at the Aspen	2018
	Conference on Advances in Quantum Algorithms and Computation	
•	National Science Foundation (NSF) Graduate Research Fellowship	2014-17
•	Phi Beta Kappa (Academic Honor Society), MIT Xi Chapter	2014
•	MIT Junior Lab Edward C. Pickering Award for Outstanding Original Project, Honorable Mention	2013

PUBLICATIONS

- L. Zhou, J. Basso, S. Mei. *Statistical Estimation in the Spiked Tensor Model via the Quantum Approximate Optimization Algorithm*. Preprint on <u>arXiv:2402.19456</u>, (2024).
- C.-F. Chen, H.-Y. Huang, J. Preskill, L. Zhou[†]. Local minima in quantum systems. In Proceedings of the 56th Symposium on Theory of Computing, <u>STOC'24 (2024)</u>. Also in QIP'24. Under review at Nature Physics. arXiv:2309.16596.
- J. Basso, D. Gamarnik, S. Mei, L. Zhou[†]. *Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models*. In Proceedings of the 63rd Symposium on Foundations of Computer Science, FOCS'22 (2022). arXiv:2204.10306.
- S. Ebadi, ..., L. Zhou, ..., M.D. Lukin. *Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays*. <u>Science 376, 1209 (2022)</u>. <u>arXiv:2202.09372</u>.
- J. Basso, E. Farhi, K. Marwaha, B. Villalonga, L. Zhou[†]. The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model. In Proceedings of the 17th Conference on the Theory of Quantum Computation, Communication and Cryptography, <u>TQC'22</u> (2022), Outstanding Paper Award. <u>arXiv:2110.14206</u>.
- L. Zhou, D. Aharonov. Strongly Universal Hamiltonian Simulators. QIP'21 (2021). arXiv:2102.02991.
- M.P. Harrigan, ..., L. Zhou, ..., R. Babbush. *Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor*. <u>Nature Physics 17, 332 (2021)</u>. arXiv:2004.04197.
- S.H. Cantu, A.V. Venkatramani, W. Xu, L. Zhou, B. Jelenković, M.D. Lukin, V. Vuletić. *Repulsive photons in a quantum nonlinear medium*. <u>Nature Physics 16, 921 (2020)</u>. arXiv:1911.02586.
- E. Farhi, J. Goldstone, S. Gutmann, L. Zhou[†]. *The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size*. <u>Quantum 6, 759 (2022)</u>. Also in QIP'21. <u>arXiv:1910.08187</u>.
- Z. Eldredge, L. Zhou, A. Bapat, J.R. Garrison, A. Deshpande, F.T. Chong, A.V. Gorshkov. *Entanglement bounds* on the performance of quantum computing architectures. <u>Phys. Rev. Research 2, 033316 (2020)</u>. arXiv:1908.04802.
- L. Zhou*, S.-T. Wang*, S. Choi, H. Pichler, and M.D. Lukin. *Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices.* Phys. Rev. X 10, 021067 (2020). arXiv:1812.01041.

- H. Pichler*, S.-T. Wang*, L. Zhou*, S. Choi, and M.D. Lukin. *Computational complexity of the Rydberg blockade in two dimensions*. Preprint on arXiv:1809.04954, (2018).
- H. Pichler*, S.-T. Wang*, L. Zhou, S. Choi, and M.D. Lukin. *Quantum Optimization for Maximum Independent* Set Using Rydberg Atom Arrays. Preprint on arXiv:1808.10816, (2018).
- D. Aharonov and L. Zhou[†]. *Hamiltonian Sparsification and Gap-Simulation*. In Proceedings of the 2019 ACM Conference on Innovations in Theoretical Computer Science, <u>ITCS'19 (2019)</u>. arXiv:1804.11084.
- L. Zhou*, S. Choi*, and M.D. Lukin. *Symmetry-protected dissipative preparation of matrix product states*. <u>Phys.</u> <u>Rev. A (2021)</u>. <u>arXiv:1706.01995</u>.
- A.D. Bookatz, E. Farhi, and L. Zhou[†]. Error suppression in Hamiltonian based quantum computation using energy penalties. Phys. Rev. A 92, 022317 (2015). arXiv:1407.1485.
- L. Zhou and G.S.F. Stephans. Energy and centrality dependence of particle multiplicity in heavy ion collisions from $\sqrt{s_{NN}} = 20$ to 2760 GeV. Phys. Rev. C 90, 0149902 (2014). arXiv:1312.3656.
- N. Sinenian, ..., L. Zhou, ..., R.J. Leeper, Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF. <u>Rev. Sci. Instrum. 83</u>, 043502 (2012). doi:10.1063/1.3703315.

indicates equal contribution / co-first authorship
 indicates alphabetical ordering of authors

PRESENTATIONS

•	Local	ninima in quantum systems	
	0	Invited talk at Institut de Recherche en Informatique Fondamentale (IRIF), Paris	05.2024
	0	Accepted talk, 27th Annual Conference on Quantum Information Processing (QIP) [video]	01.2024
	0	Invited talk at the Max Planck Institute of Quantum Optics	11.2023
•	Prospe	cts of Variational Quantum Advantages in Optimization and Learning Problems	
	0	Invited talk at the Phasecraft Quantum Algorithms Workshop	05.2024
•	Quanti	im Computational Advantages in Energy Minimization	
	0	Invited talk at the Institute for Quantum Computing, University of Waterloo	04.2024
	0	Invited talk at the University of Maryland, College Park	03.2024
	0	Invited talk at the University of California, Los Angeles	03.2024
	0	Invited talk at the University of Michigan	03.2024
	0	Invited talk at Purdue University	02.2024
	0	Invited talk at the Perimeter Institute for Theoretical Physics	02.2024
	0	Invited talk at the C.N. Yang Institute for Theoretical Physics at Stony Brook University	02.2024
	0	Invited colloquium talk at the University of Southern California	11.2023
	0	Invited talk for the "Mathematical and Computational Challenges in Quantum Computing"	11.2023
		program at the Institute for Pure and Applied Mathematics	
•	Explor	ing Quantum Advantages in Optimization Problems	
	0	Invited talk at the NISQ Algorithms and Hardware (NISQAH 2023) conference [video]	06.2023
•	Quanti	im computing with Rydberg atom arrays	
	0	Tutorial talk at the 2023 APS March Meeting	03.2023

•	Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin	
	glass models	
	 Accepted talk, 18th Conference on Theory of Quantum Computation, Communication and Cryptography (TQC) [video] 	07.2023
	 Accepted talk, 63rd Annual Symposium on Foundations of Computer Science (FOCS) 	11.2022
٠	Advantages and Limitations of the Quantum Approximate Optimization Algorithm	
	 Invited talk at the 2023 Information: Theory and Applications (ITA) workshop 	02.2023
	• Invited talks at the MIT Center for Theoretical Physics and QuEra Computing, Inc.	06.2022
٠	The QAOA at High Depth for MaxCut on Large-Girth Regular Graphs and the SK Model	
	• Outstanding Paper Award talk at the 17th Conference on Theory of Quantum Computation,	07.2022
	Communication and Cryptography (TQC) [video]	
•	Quantum Approximate Optimization: Challenges and Opportunities	
	 Invited talk at the 2021 INFORMS Annual Meeting 	10.2021
٠	Strongly Universal Hamiltonian Simulators	
	 Invited talk at the Simons Institute Quantum Wave in Computing Reunion Workshop 	07.2021
	 Accepted talk at QC40: Physics of Computation Conference 40th Anniversary 	05.2021
	 Invited talk at the QCDA (Quantum Code Design and Architecture) seminar 	04.2021
	• Accepted talk, 24th Annual Conference on Quantum Information Processing (QIP) [video]	02.2021
•	The QAOA and the Sherrington-Kirkpatrick Model at Infinite Size	
	• Accepted talk, 24th Annual Conference on Quantum Information Processing (QIP) [video]	02.2021
•	Quantum Simulation and Optimization in Near-Term Quantum Computers	
	 Invited talk at the Stanford Q-FARM Special Seminar 	12.2020
	 Invited talk at the MIT Center for Theoretical Physics 	12.2020
	 Invited talk at the QM seminar, UC Berkeley [video] 	12.2020
	 Invited talk at the Institute for Quantum Information (IQI) Seminar, Caltech 	12.2020
•	Hamiltonian Sparsification and Gap-Simulation	
	• Accepted talk, 22nd Annual Conference on Quantum Information Processing (QIP) [video]	01.2019
	 Accepted talk, 10th Innovations in Theoretical Computer Science conference (ITCS) 	01.2019
•	Quantum Approximate Optimization: Performance and Applications with MaxCut and Maximum	
	Independent Set Problems	
	 Talk at the 50th Meeting of APS Division of Atomic, Molecular & Optical Physics 	05.2019
	 Poster at the Quantum Science Gordon Research Conference 	08.2018
	 Poster at the Aspen Conference on Advances in Quantum Algorithms and Computation 	03.2018
٠	Symmetry-protected dissipative preparation of matrix product state	
	o Invited talk at the Mathematical Picture Language Project Seminar, Harvard University	11.2019
	 Poster at the 48th Meeting of APS Division of Atomic, Molecular & Optical Physics 	06.2017
	• Talk at the Quantum Science: Implementation workshop in Benasque, Spain	07.2016
٠	Robust quantum information processing with atomic cat states	
	 Poster at the Atomic Physics Gordon Research Conference 	06.2015

ADDITIONAL EXPERIENCES

Teaching			
•	Guest lecturer for the "Rydberg Computers" tutorial at the 2023 APS March Meeting	2023	
•	Supporting Teaching Fellow for Physics of Quantum Information (Physics 271) and Modern	2016–20	
	Atomic and Optical Physics II (Physics 285b) at Harvard University		
•	Teaching Fellow for Electrodynamics (Physics 153) at Harvard University	2018	

•	Teacher & Mentor at MIT China Development Initiative's Service Leadership Program	2013
•	Teaching high school students in Gaildorf, Germany through MIT's Global Teaching Lab	2012
•	Teaching high school students at the Splash event for the MIT Educational Studies Program	2011
Ser	vice	
•	Program committee for TQC'23 (18th conference on Theory of Quantum Computation)	2023
•	Referee for leading academic journals, including: Physical Review, Quantum, ACM Transactions on Ouantum Computing, Nature Communications	2019–24
•	Reviewer for leading quantum computer science conferences, including: QIP, TQC, STOC, SODA	2019–23
•	MIT Society of Physics Students, Executive Council	2011-14
Mentorship		
•	Sara Vanovac, graduate student at Caltech	2023-24
•	Chi-Fang (Anthony) Chen, graduate student at Caltech	2022-24
•	Ishaan Kannan, undergraduate student at Caltech	2021-24
•	William (Robbie) King, graduate student at Caltech	2021-24
•	Hsin-Yuan (Robert) Huang, graduate student at Caltech (now at Google, future Caltech faculty)	2021-23
•	Joao Basso, undergraduate student at Tufts (now UC Berkeley graduate student)	2019–23
•	Beatrice Nash, graduate student at Harvard	2020-21
•	Katherine van Kirk, graduate student at Harvard	2020-21
•	Madelyn Cain, graduate student at Harvard	2019–21
•	Dylan Li, undergraduate student at Harvard	Fall 2020
•	Amir Shanehsazzadeh, undergraduate student at Harvard	Fall 2020
•	Abhishek Anand, undergraduate student at Harvard (now Caltech graduate student)	2018–19

Software

• MATLAB, Python, Julia, Mathematica, Java, C++, GPGPU computing